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Stability of planar reactive fronts in external fields

Arkady B. Rovinsky,* Anatol M. Zhabotinsky,† and Irving R. Epstein‡

Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 0254-91
~Received 17 June 1998!

Differential flows of species, which may arise in reactive systems due to external fields such as electric fields
or pressure gradients, may significantly affect the characteristics and stability of propagating fronts. A gener-
alized Kuramoto-Sivashinsky equation describing the dynamics of perturbations of a planar front in systems
with differential flows is derived and analyzed. The analysis shows that a differential flow parallel to the front
may have either a destabilizing or a stabilizing effect. The effect of a lateral flow does not depend on its
direction, while normal flows have a stabilizing effect when running in one direction and a destabilizing effect
in the other. These analytical conclusions are verified in numerical experiments with a model of a cubic
autocatalytic reaction. As a result of the instability, a periodic pattern of modulation appears on the front. In the
case of lateral flow, the pattern drifts along the front. With normal flow, the pattern is stationary. The simu-
lations show that both lateral and normal differential flows have a significant effect on the front velocity.
@S1063-651X~98!08611-5#
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I. INTRODUCTION

In a variety of spatially extended systems, such as flam
solidification fronts, waves of excitation in biological medi
and chemical waves@1–3#, one may observe moving front
that separate parts of the medium in different states.
stability of such fronts is an important problem. A key fact
that affects a front’s stability is transport. Transport provid
the coupling between spatially separated elements and b
about the front propagation. Of the two kinds of transpo
convective and diffusive, diffusive transport has been
more extensively considered in studies of front stability.

Homogeneous flows can arise naturally in systems s
jected to external fields, such as electric fields or press
gradients. As such fields may unequally affect the com
nents of the system~e.g., ions of opposite charge!, the flow
velocities of the various components may be different. T
‘‘differential flow’’ of the constituents may change the st
bility of the system’s homogeneous steady state and lea
the appearance of patterns@4#.

Here, we study the effect of external fields and the res
ing differential flows on the stability of propagating plan
fronts. It is known that electric fields may profoundly influ
ence traveling waves in biological tissues@5#, chemical reac-
tions @6#, and combustion processes@7#. It appears, however
that no general approach has been developed to describ
observed phenomena. This work outlines such an appro
by generalizing the Kuramoto-Sivashinsky description@8# of
wave fronts.

Since differential flows can only be produced by, and
proportional to, external fields, we use the terms ‘‘differe
tial flow’’ and ‘‘external field’’ interchangeably~assuming
here that a field gives rise only to differential flows!. The
effects of an external field differ significantly for the later
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~i.e., parallel to the front! and normal components of th
field. The effect of the lateral component is quadratic in t
field strength and may be either destabilizing or stabilizin
depending on the details of the system and the wave reg
under consideration. The effect of the normal componen
linear. As a result, normal fields of opposite directions
ways have opposite effects on the stability of the fro
While these findings might be anticipated on the basis
symmetry considerations, they are deduced below from
explicit expression for the analog of the Kuramot
Sivashinsky equation for systems in external fields. Our
sults are then verified by numerical experiments on a che
cal model of cubic autocatalysis@10#. The numerical
modeling also shows a strong effect of the differential flo
on the front velocity.

Section II presents the theoretical description of differe
tial flow effects. Section III describes the model and giv
the results of numerical simulations. Numerical procedu
are described in Sec. IV. Section V is devoted to discuss

II. THE KURAMOTO-SIVASHINSKY EQUATION
FOR SYSTEMS WITH DIFFERENTIAL FLOWS

We derive here the Kuramoto-Sivashinsky equation
systems in a constant uniform external field, using an ad
tation of the original Kuramoto approach@9# suggested by
Malevanetset al. @11#. The resulting equation governs th
evolution of small, smooth perturbations of a planar front

We assume that the external field causes advection of
components of the system. In an electric field, the flow
locity of each species is proportional to its electric charge,
mobility, and the field strength~Ohm’s law!. For a liquid
phase in a porous medium, the flow velocity of a specie
proportional to the pressure gradient~Darcy’s law! and in-
versely proportional to the species’ affinity to the so
phase. The reaction-diffusion-convection system is descri
by the equation

Ż5f~Z!2~V¢ ¹!Z1DDZ, ~1!
5541 © 1998 The American Physical Society
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whereZ is ann vector of phase variables,f~Z! is the kinetic
term determined by the local interactions~in chemical sys-
tems given by the rate equations!, D is a diagonal diffusivity
matrix, andV¢ is a diagonal flow velocity matrix.V¢ is a
matrix in the phase space whose elements are th
dimensional~3D! vectors in the physical space; it can b
represented asUEW , whereU is an n3n diagonal mobility
matrix andEW is the 3D vector of the external field.

We assume that in one dimension Eq.~1! has a stable
propagating front solutionZ(t,x)5Z0(x2ct), where c is
the front velocity. In other words,Z0(j) is assumed to be a
solution of the equation

2cZ085f~Z0!2VxZ081DZ09 , ~2!

wherej[x2ct and the prime represents differentiation wi
respect toZ0’s single argument. We will be considering a
infinite parametrically homogeneous medium. This impl
translation invariance of the system: ifZ0(j) is a solution of
Eq. ~2! then, for anydj, Z0(j1dj) is a solution as well.
This implies that

]f

]Z
~Z0!Z081~c2Vx!Z091DZ0-50. ~3!

Let us designatew05Z08(j). We will be using the solutions
of the eigenvalue problem

]f

]Z
~Z0!wi1~c2Vx!wi81Dwi95l iwi , ~4!

andw0 is thus the eigenfunction of the problem correspon
ing to l050. Since for small shiftsdj, Z0(j1dj)5Z0(j)
1(dZ0 /dj)dj[Z0(j)1w0dj, a superposition ofZ0 with a
small perturbation along thew0 vector can be considered a
a shifted solutionZ0(j1dj).

The last remark implies that a perturbed front solution c
be sought in the form

Z~x,y,z,t !5Z0@j1c0~y,z,t !#1(
i .0

c i~y,z,t !wi~j!.

~5!

Substituting expression~5! into Eq. ~1! and using Eq.~2!
yields

(
i 50

`
]c i

]t
wi5(

i 50

` S ]f

]Z
~Z0!wi1~c2Vx!wi81Dwi9Dc i

1(
i 50

`

DwiDc i1Dw08~¹c0!22(
i 50

`

V¢ wi¹c i ,

~6!

where

Z05Z0~j1c0!, w05w0~j1c0!, and wi5wi~j!, i .0.

~7!

It should be noted that up to the terms of order (¹c0)2

Eq. ~4! is satisfied and^w0uwi&50 with Z0 and wi
( i 50,1,. . . ) given by Eq.~7! @9,11#. With Eq. ~4!, Eq. ~6!
reduces to
e-

s

-

n

(
i 50

`
]c i

]t
wi5(

i 50

`

l iwic i1(
i 50

`

DwiDc i

1Dw08~¹c0!22(
i 50

`

V¢ wi¹c i . ~8!

Since the functionsc i depend only on they and z spatial
coordinates, the operators¹ and D can be thought of as
acting only on those coordinates. For this reason only theVy
andVz components of the flow~or external field! appear in
Eq. ~8!. Therefore until otherwise specified we will think o
V¢ as a lateral flow~i.e., in the frontal plane!.

Taking scalar products of Eq.~8! with each of the left
eigenvectorsw0

1(j1c0) and wi
1(j) ( i .0) yields the sys-

tem of equations:

]c i

]t
5l ic i1(

j 50

`

Di j Dc j1di0~¹c0!22(
j 50

`

VW i j ¹c j , ~9!

where Di j 5^wi uDuwj&, di05^wi uDuw08&, VW i j 5^wi uV¢ uwj&,
andw05w0(j). Consider now the evolution of a small sp
tially smooth perturbation such that allc i are initially of the
same order of magnitude;c. By a spatially smooth pertur
bation we mean that any spatial derivativeu¹cu!ulcu, ulu
5min(ul1u,ul2u, . . . ). Hence, the modesc i ( i .0) evolve
much faster thanc0 ~which corresponds tol050!, and
therefore they can be adiabatically eliminated. In oth
words, these modes can be taken as solutions of the e
tions

l ic i1(
j .0

Di j Dc j2(
j .0

VW i j ¹c j

52Di0Dc02di0~¹c0!21VW i0¹c0 , i .0. ~10!

As the gradient terms on the left hand side of Eq.~10! are
small compared tol ic i , they can be neglected to a firs
approximation. In the second approximation the solution

c i5
1

l i
FVW i0¹c02S Di02(

j .0

VW i j VW j 0

l j
DDc0

2S (
j .0

Di j VW j 01VW i j D j 0

l j

2 (
j .0,k.0

VW i j ~VW jkVW k0!

l jlk
D¹3c0G , i .0. ~11!

Substitutingc i into Eq. ~9! for c0 and making the trans
formation of coordinatesy°y2V00,yt, z°z2V00,zt, we fi-
nally arrive at the Kuramoto-Sivashinsky equation for sy
tems in external fields:

]c0

]t
5dDc01nW ¹3c02dD2c01g~¹c0!2. ~12!
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The important parameter isd:

d5D002(
i .0

VW 0iVW i0

l i
. ~13!

The other parameters are

nW 5(
i .0

1

l i
S ~D0iVW i01VW 0iDi0!2VW 0i (

j .0

~VW i j VW j 0!

l j
D ,

~14!

d5(
i .0

1

l i
S D0iDi0

2(
j .0

D0iVW i j VW j 01Di j VW j 0VW 0i1D j 0VW i j VW 0i

l j

1 (
j .0,k.0

~VW 0iVW i j !~VW jkVW k0!

l jlk
D . ~15!

Note thatd, nW , andd depend only on they and z com-
ponents of the vectorV¢ . The coefficient in front of the non
linear termg can be found using the same argument as
Refs.@8, 11#. It is equal tog52(c2V00,x)/2.

A few observations are now in order. First, if all the com
ponents of the matrixV¢ are the same~the case of bulk flow!,
all termsVW i0 and VW 0i vanish for i .0, and after the coordi-
nate changex°x2V00,xt Eq. ~12! turns into the classic
Kuramoto-Sivashinsky equation. Nontrivial effects of the e
ternal field thus appear only if the field induces a differen
flow of the system species. Second, we have so far mad
assumptions about the strength of the field: Eq.~12! and
expressions~13!, ~14!, and~15! are valid for arbitrary fields.
Third, the parameters of Eq.~12!, except forg, depend ex-
plicitly only on the lateral componentV¢ i of the flow/field.
However, they depend on the normal component implici
through the eigenvectorswi of the problem~4!.

The most important observation is that the effective d
fusion coefficientd, which determines the stability of th
trivial solution c050, depends quadratically on the streng
of the lateral component of the field. If the sign of the ad
tional term in Eq.~13! is opposite to that ofD00, a suffi-
ciently strong lateral fieldwill always change the stabilityof
the front.

We now seek the explicit dependence ofd on the normal
componentVx of the flow field for smallVx . Taking the
operator2Vx(]/]j) as a perturbation and using perturbati
theory one obtains

w05w0
02(

i .0

^wi
0uVxuw0

08&
l02l i

wi
0[w0

01(
i .0

^wi
0uVxuw0

08&
l i

wi
0 ,

~16!

where the zero superscripts designate the values corresp
ing to Vx50. The expression~13! now becomes

d5D00
0 1(

i .0

^wi
0uVxuw0

08&
l i

~Di0
0 1D0i

0 !2(
i .0

VW 0i ,iVW i0,i

l i
.

~17!
n

-
l
no

,

-

-

nd-

Equation~17! shows that the diffusion coefficientd depends
linearly on the normal component of the field~as long as this
component is small enough!. Hence the field in one of the
normal directions always has a stabilizing effect, while
field in the opposite direction destabilizes the front. In oth
words, when the original system is slightly subcritical (D00

0

is small and positive, and the front is stable! applying the
field in one normal direction will turnd negative and thus
destabilize the front propagation. Conversely, in the sligh
supercritical case (D00

0 ,0), applying a field in the opposite
direction will maked.0 and stabilize the front. This con
clusion is valid for any system in a near-critical regime.

The following section illustrates these findings by nume
cal simulation of a system with cubic autocatalysis.

III. FRONT SIMULATIONS IN A SYSTEM
WITH CUBIC AUTOCATALYSIS

While the considerations in the preceding section apply
both two and three spatial dimensions, we restrict ourse
here to a two-dimensional system. We model situations w
eitherVxÞ0, Vy50, or Vx50, VyÞ0.

We study here a model autocatalytic chemical systemA
12B→3B. This model has often been used for studies
instabilities of reaction-diffusion fronts@11–13#. With ad-
vection of speciesA the system is described by the followin
equation:

]a

]t
52ab21DADa2VW ¹a, ~18!

]b

]t
5ab21DBDb. ~19!

The system is described in a coordinate frame in wh
the speciesB does not undergo bulk motion.

Locally, the system has an integrala1b5a0 , which is an
external parameter. The system has two steady statesa
5a0 , b50) and (a50, b5a0), the former unstable and th
latter stable. When spatially extended in one dimens
(DA ,DBÞ0 VW 50), the system supports steadily pro
agating waves of transition from the unstable state to
stable one@12# ~Fig. 1!. In a two- or three-dimensional me
dium, the propagating planar front remains stable as long
DA /DB,dcr'2.35 @11,12#.

We simulated the system~18!, ~19! in a 2D rectangular
domain with lateral~i.e., in the direction of the planar front!
size between 400 and 4800 units and normal length 100–
units. The typical size of the medium was 12003100 units.
In these simulations the planar front extended in the horiz
tal (x) direction and propagated along the vertical (y) direc-
tion. We imposed periodic boundary conditions on the ve
cal edges of the domain and no flux boundary conditions
the horizontal edges.

A. Effects of lateral flow

All the simulations of the system with a differential flow
of species along the front were made with equal diffus
coefficients. The calculations demonstrate that, in acc
dance with Eq.~17!, the otherwise stable flat propagatin
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front becomes unstable when a lateral field is imposed, p
vided that the field strength exceeds a critical value. O
numerical simulations also reveal details of the pattern
velopment that are missing in the analysis performed in S
II. Figure 2~a! shows that the front becomes periodica
modulated, and the modulation pattern drifts in the direct
opposite to the flow ofA induced by the field. The amplitud
of the pattern grows roughly linearly with the differenti
flow velocity, as illustrated in Fig. 3. The jagged appearan
of the curve results from the fact that the number of perio
in the pattern, and hence the front characteristics, change
discrete fashion as the parameters change continuously.

For larger flows, 2,v,10, the amplitude of the fron
perturbation grew so large that the distortions caused
simulations to abort because the program could no lon
locate and follow the front. At still larger flow velocities, th
tendency is reversed: the amplitude of the front distortio
diminishes as the velocity grows. The shape of the fr

FIG. 1. Transition front between the initial (a51, b50) and
final (a50, b51) states for the reactionA12B→3B. All time and
space units in this and subsequent figures are dimensionless.

FIG. 2. Cellular patterns caused by lateral differential flow
reacting species. The size of the system is 12003100 units. Gray
levels represent concentration ofA: dark areas correspond to hig
a. The front propagates downwards. Time increases from the
down. Parameters:DA5DB52.0. ~a! Flow velocity Vx50.7; suc-
cessive frames are 100 time units apart.~b! Flow velocity Vx

550; successive frames are 20 time units apart.
o-
r
-
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e
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modulation becomes highly asymmetric@Fig. 2~b!#.
As shown in Fig. 4, the lateral differential flow signifi

cantly affects the velocity of the front propagation. Durin
the transient period, the growth of the front propagation
locity accompanied the perturbation growth and was bar
noticeable at the early stages. The lateral field affects
lateral drift of the front patterns as well: the drift also in
creases with the differential flow velocity~Fig. 4!.

B. Effects of normal flow

While the effects of a lateral flow appeared in the mod
with equal diffusion coefficients, and hence far from the d
fusive front instability, the destabilizing effects of a norm
flow were only observed in a vicinity of the diffusive insta
bility, with DA /DB5dcr'2.35.

Figure 5 shows a cellular pattern that emerges on an
erwise stable planar front (DA /DB,dcr) due to the normal
differential flow of species. Just as in the case of lateral flo
the pattern amplitude grows with the strength of the exter

f

p

FIG. 3. Mean-square amplitude of the cellular pattern as a fu
tion of the lateral differential flow velocity. Parameters:DA5DB

52.0.

FIG. 4. Front propagation velocity and drift velocity of the ce
lular pattern versus lateral differential flow velocity. Paramete
DA5DB52.0.
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field ~Fig. 6!. Unlike the case of lateral flow, the pattern do
not drift along the front. An increase of the normal flow ofA
in the positive direction~up in Fig. 5! slows the front until
the front undergoes a transition to another state. This n
state represents a nearly linear decrease ofb and increase of
a along they direction. The critical flow velocity in our cas
wasVcr'0.25.

Figure 7 illustrates the opposite situation. Under sligh
different conditions,DA /DB52.94.dcr , the planar front
forms cellular patterns through a diffusive instability. Impo
ing an external field in the direction opposite to that in t
previous example makes the cellular pattern disappear
the front become flat. The flow ofA in the negative direction
accelerates the front propagation~Fig. 8!. It should be noted
that the dependence of the front velocity on the normal fl
velocity remained qualitatively the same, and the pheno
enon of front extinction mentioned above persisted, e
when the diffusion coefficient ratio was far from critic
~e.g., forDA5DB52!.

IV. NUMERICAL PROCEDURES

Two considerations influenced our choice of a numeri
integration method. One is that the necessity of shifting
frame to adjust to the front position rules out multistep te
niques, such as the Gear or Adams and related predic
corrector methods, because a frame shift represents a kin
a singular perturbation to the numerical procedure. The o
is that neither the kinetic nor the diffusive terms in the eq
tions make the problem stiff: the kinetic terms in the equ
tion for a andb are exactly equal in absolute value, and t

FIG. 5. Cellular pattern appearing on an initially flat front as t
result of normal differential flow. Parameters:DA55, DB52.2, v
50.225. The front propagates upward.

FIG. 6. Mean-square amplitude of the cellular pattern as a fu
tion of normal differential flow velocity. Parameters:DA55, DB

52.2. The front propagates in the positive direction.
w

-

nd

-
n

l
e
-
r-
of

er
-
-

diffusive terms in the discretized scheme must be kept sm
because of the steep gradients in the solutions. The poss
ity of numerical instability caused by the convective ter
can be avoided by using an ‘‘upwind’’ scheme in order
discretize the first order spatial derivative: forward diffe
ences for positive flow velocities and backward differenc
for negative velocities@14#. These observations, combine
with the relatively modest demands for numerical accura
led us to choose the Euler technique as an adequate too
the problem. We varied both the time and the space res
tions to test the validity of the results. The size of the tw
dimensional spatial grid was changed from 400 to 800 m
points in thex dimension and from 100 to 200 in they
dimension. The time step was varied from 1023 to 1022.
The frame adjustment to the front was made so that the le
of the a variable (a<0.5) was kept at a fixed distance from
the boundarya51 ~normally half of the system size in they
dimension!. At the start of each run, the propagating fro
was precalculated in a 1D system and then extended in
second (x) dimension with a random shift along they di-
mension. The amplitude of the shift was 3 units, i.e., no m

FIG. 7. Flattening of a cellular front by a normal differenti
flow. The upper panel shows the front immediately before
switching on of the flow. Parameters:DA55.0,DB51.7. The front
propagates upward.

FIG. 8. Front propagation velocity versus normal different
flow velocity. Parameters:DA55, DB52.2. The front propagates in
the positive direction.
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than 3% of the system size. To calculate the mean-sq
amplitude of the front pattern, the front line was taken as
set of coordinates wherea50.5.

V. DISCUSSION

An interesting feature of the periodic patterns emerg
on the front is that they always drift against the flow of theA
component. In terms of an ‘‘activator-inhibitor’’ description
the A species may be considered an inhibitor. It was arg
recently@15# that it is typical for waves induced by a differ
ential flow instability in activator-inhibitor systems to mov
against the flow of inhibitor. Apparently, the front cellula
patterns induced by a differential flow preserve this featu

The front propagation phenomena shown by model~18!,
~19! are sometimes considered as analogs of flame fr
@3,12#. We note one peculiarity of the cubic autocatalysis
model~18!, ~19!: its initial statea5a0 andb50, which cor-
responds to the extinguished state, is unstable. Therefore
cannot observe extinction of a front in the simulations.
mentioned in Sec. III B, we observed a transition from
relatively narrow front to a nearly linear gradient when
normal field was applied. We believe that in a more realis
model, with the extinguished state stable against subthr
old perturbation, such a transition would correspond to
tinguishing the front.

Chemical waves in electric fields have been studied p
viously @6#, but the explanations of the observed phenom
were restricted to a one-dimensional description of the wa
field interaction@16#. As shown here, the effects of extern
fields on fronts in two- or three-dimensional systems may
much richer.

It is well known that the physical nature of the Turin
instability is determined by the fact that the fast diffusion
the inhibitor removes it from the spot of increased activa
growth @17#. The nature of the front instability due to norm
flow appears to be similar: the front becomes unstable w
the inhibitor, speciesA in our model, is taken away from th
reaction zone by the flow, and the front’s stability increas
in the opposite case. It should be noted that the term ‘‘inh
tor’’ has a rather narrow meaning in the context of Turi
instabilities: a small deviation of the inhibitor concentrati
from its steady state value counteracts a small deviation
the activator concentration of the same sign from the act
tor’s steady state. In general, this does not prevent the inh
ut
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tor species from accelerating the steady state reaction rat
fact, this is the case in model~18!, ~19!: the rate of the
reaction increases with the concentration of speciesA. The
acceleration of the front with the flow ofA pointing towards
the front can now be understood: it is caused by the
creased steady state rate of the reactionA→B. While the
effect of a normal field on the front propagation veloci
does not seem counterintuitive, the similarly strong effect
a lateral field appears somewhat surprising. The above ex
nation of the front acceleration under normal flow can a
be applied in this case to rationalize the phenomenon of
pattern drift. When perturbations of the front develop, so
parts of the distorted front are facing the flow: the flow ha
normal component with respect to these parts, and the p
start drifting in the direction opposite to the flow. This co
sideration, however, does not elucidate the mechanism o
instability itself, nor does it explain the acceleration of t
front due to lateral flow. We believe that a more thorou
study of Eq.~12! should provide some clue as well as d
scribe the emerging front patterns. Since Eq.~12! is quite
complicated, such a study will be a demanding task.

Our results suggest the possibility of controlling propag
ing fronts by external fields. In particular, the potential
accelerate and/or stabilize front propagation may be imp
tant for combustion applications. We find it interesting th
the effects described here seem to be similar in many
spects to those found by Sheret al. @7# in a study of flames in
electric fields. The possibility of stabilizing fronts may als
be significant for electrophysiology, and particularly f
studies of excitation waves in cardiac muscle.

To simulate an infinite medium with a finite grid we em
ployed the standard approach of using periodic bound
conditions: we performed our simulations with period
boundary conditions in the lateral dimension. More realis
boundary conditions would certainly affect the results.
particular, the convective nature of the front instability d
to lateral fields will become important, and it merits furth
study.
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