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Stability of planar reactive fronts in external fields
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Differential flows of species, which may arise in reactive systems due to external fields such as electric fields
or pressure gradients, may significantly affect the characteristics and stability of propagating fronts. A gener-
alized Kuramoto-Sivashinsky equation describing the dynamics of perturbations of a planar front in systems
with differential flows is derived and analyzed. The analysis shows that a differential flow parallel to the front
may have either a destabilizing or a stabilizing effect. The effect of a lateral flow does not depend on its
direction, while normal flows have a stabilizing effect when running in one direction and a destabilizing effect
in the other. These analytical conclusions are verified in numerical experiments with a model of a cubic
autocatalytic reaction. As a result of the instability, a periodic pattern of modulation appears on the front. In the
case of lateral flow, the pattern drifts along the front. With normal flow, the pattern is stationary. The simu-
lations show that both lateral and normal differential flows have a significant effect on the front velocity.
[S1063-651%98)08611-5

PACS numbsg(s): 03.40.Kf, 82.20.Mj, 42.25.Gy

I. INTRODUCTION (i.e., parallel to the frontand normal components of the
field. The effect of the lateral component is quadratic in the

In a variety of spatially extended systems, such as flamedield strength and may be either destabilizing or stabilizing,
solidification fronts, waves of excitation in biological media, depending on the details of the system and the wave regime
and chemical wavegL—3], one may observe moving fronts under consideration. The effect of the normal component is
that separate parts of the medium in different states. Thénear. As a result, normal fields of opposite directions al-
stability of such fronts is an important problem. A key factor Ways have opposite effects on the stability of the front.
that affects a front’s stability is transport. Transport providesWhile these findings might be anticipated on the basis of
the coupling between spatially separated elements and bringymmetry considerations, they are deduced below from the
about the front propagation. Of the two kinds of transport,€Xplicit expression for the analog of the Kuramoto-
convective and diffusive, diffusive transport has been farSivashinsky equation for systems in external fields. Our re-
more extensively considered in studies of front stability. ~ Sults are then verified by numerical experiments on a chemi-

Homogeneous flows can arise naturally in systems subcal model of cubic autocatalysi$1l0]. The numerical
jected to external fields, such as electric fields or pressurglodeling also shows a strong effect of the differential flow
gradients. As such fields may unequally affect the compoon the front velocity.
nents of the systerte.g., ions of opposite chargehe flow Section Il presents the theoretical description of differen-
velocities of the various components may be different. Thdial flow effects. Section Il describes the model and gives
“differential flow” of the constituents may Change the sta- the results of numerical simulations. Numerical procedures
bility of the system’s homogeneous steady state and lead @€ described in Sec. IV. Section V is devoted to discussion.
the appearance of patterf¥].

Here, we study the effect of external fields and the result- ||, THE KURAMOTO-SIVASHINSKY EQUATION
ing differential flows on the stability of propagating planar FOR SYSTEMS WITH DIFFERENTIAL FLOWS
fronts. It is known that electric fields may profoundly influ-
ence traveling waves in biological tissUé&s, chemical reac- We derive here the Kuramoto-Sivashinsky equation for

tions[6], and combustion processgd. It appears, however, Systems in a constant uniform external field, using an adap-
that no general approach has been developed to describe tifion of the original Kuramoto approa¢B] suggested by
observed phenomena. This work outlines such an approaddalevanetset al. [11]. The resulting equation governs the
by generalizing the Kuramoto-Sivashinsky descripfi8hof evolution of small, smooth perturbations of a planar front.
wave fronts. We assume that the external field causes advection of the
Since differential flows can only be produced by, and arecomponents of the system. In an electric field, the flow ve-
proportional to, external fields, we use the terms “differen-locCity of each species is proportional to its electric charge, its
tial flow” and “external field” interchangeablyassuming Mmobility, and the field strengtifOhm’s law). For a liquid
here that a field gives rise only to differential flovghe  Phase in a porous medium, the flow velocity of a species is

effects of an external field differ significantly for the lateral Proportional to the pressure gradie(itarcy’s law and in-
versely proportional to the species’ affinity to the solid

phase. The reaction-diffusion-convection system is described

*Electronic address: rovinsky@brandeis.edu by the equation
"Electronic address: zhabotinsky@brandeis.edu ) .
*Electronic address: epstein2@brandeis.edu Z=1(Z2)—(VV)Z+DAZ, (1)
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whereZ is ann vector of phase variable§Z) is the kinetic
term determined by the local interactiofia chemical sys-
tems given by the rate equationb is a diagonal diffusivity

matrix, andV is a diagonal flow velocity matrixV is a

matrix in the phase space whose elements are three-
dimensional(3D) vectors in the physical space; it can be

represented ablE, whereU is annxn diagonal mobility

matrix andE is the 3D vector of the external field.

We assume that in one dimension E@) has a stable
propagating front solutiorZ(t,x)=2Zy(x—ct), wherec is
the front velocity. In other wordsZy(£) is assumed to be a
solution of the equation

—cZy=1(Zy)—V,Zy+DZg, (2

whereé=x—ct and the prime represents differentiation with
respect taZy's single argument. We will be considering an
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'ZO le z )\Wll//|+z DWA‘/ﬁ
+DWo(Vio)? = 2, VWiV (®)

Since the functions); depend only on theg and z spatial
coordinates, the operatol® and A can be thought of as
acting only on those coordinates. For this reason onlyhe
andV, components of the flowor external fielgl appear in
Eq. (8). Therefore until otherwise specified we will think of
V as a lateral flow(i.e., in the frontal plane

Taking scalar products of Ed8) with each of the left
eigenvectorswg (£+ o) andw; (€) (i>0) yields the sys-
tem of equations:

infinite parametrically homogeneous medium. This implies

translation invariance of the systemZg(€) is a solution of
Eqg. (2) then, for anydé¢, Zy(é+d§) is a solution as well.
This implies that

of
—5(Z0)Zg+(c=V,)Z5+DZg =0,

()
Let us designatevy=Zy(£). We will be using the solutions
of the eigenvalue problem

= (Zo)wi+ (= V,)w] +Dw/=\w,

(4)

andwy is thus the eigenfunction of the problem correspond-
ing to Ag=0. Since for small shiftel¢, Zy(£+dE)=2Z4(¢)
+(dZy/dé)dé=Zy(€) +wodé, a superposition of ; with a
small perturbation along the, vector can be considered as
a shifted solutiorZy(é+d¢).

The last remark implies that a perturbed front solution can

be sought in the form

Z(x,y,z,)=Zo[ £+ wo<y.z,t>]+§0 Gi(y,2,HW(€).

©)

Substituting expressiofb) into Eq. (1) and using Eq.(2)
yields

o 0

Zo a—l//'wl 2 Zo)Wi+(c—Vy)w/ +Dw/' | ¢;
+26 DWiA¢i+DW6(V¢o)2—__§:() Vw, Vi,
(6)
where
Zo=Zo(é+ o), Wo=Wo(é+ o), and wi=w;(§), i>0
(7)

It should be noted that up to the terms of ord&hys)?
Eq. (4) is satisfied and(wg|w;)=0 with Z, and w,
(i=0,1,...) given by Eq.(7) [9,11]. With Eq. (4), Eq. (6)
reduces to

W - S
a_lf:)\il//i""jgo DijAl/fj+di0(V¢’0)2_j20 Vi Vi, (9)

where Dj; _<WI|D|WJ> dio= <W||D|W6> VIJ <WI|V|WJ
andwg= wo(g) Consider now the evolution of a small spa-
tially smooth perturbation such that al| are initially of the
same order of magnitude ¢. By a spatially smooth pertur-
bation we mean that any spatial derivati¥y| <<|\ |, |\|
=min(\q,\5,...). Hence, the modes); (i>0) evolve
much faster tharny, (which corresponds to\,=0), and
therefore they can be adiabatically eliminated. In other
words, these modes can be taken as solutions of the equa-
tions

2 ViV
j>0

Nii+ 2, DijAg;—
j>0

DioA ¢ho—dio(Vibo) 2+ VioVik, i>0. (10

As the gradient terms on the left hand side of E) are
small compared to\;¢;, they can be neglected to a first
approximation. In the second approximation the solution is

1. ViVio
¥i= | VioVpo— Dio— >, ”.l Ao
}\| ]>0 )\J
—(E Dy;Vjo+V;;Djo
>0 7\j
Vi (VikVio)
- ————— | V3|, i>0. 11
j>0k>0 Ak ¥o b

Substitutingy; into Eq. (9) for ¢, and making the trans-
formation of coordinateg—y— Voo t, z—>z—Vq,t, we fi-
nally arrive at the Kuramoto-Sivashinsky equation for sys-
tems in external fields:

I

—r = UAyot IV — 5A2Yot ¥(Vip)2  (12)
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The important parameter &

VoV
d:DOO_E 0)|\- i0
i>0 i

. (13

The other parameters are

N 1 . . .
VZZ X (DiVio+ VoiDig) = Vi,
i>0 i
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Equation(17) shows that the diffusion coefficiedtdepends
linearly on the normal component of the figlk long as this
component is small enoughHence the field in one of the
normal directions always has a stabilizing effect, while a
field in the opposite direction destabilizes the front. In other
words, when the original system is slightly subcriticﬁlg(,

is small and positive, and the front is stabbgpplying the
field in one normal direction will turrd negative and thus
destabilize the front propagation. Conversely, in the slightly
supercritical caseQ80<O), applying a field in the opposite

direction will maked>0 and stabilize the front. This con-
clusion is valid for any system in a near-critical regime.

The following section illustrates these findings by numeri-
cal simulation of a system with cubic autocatalysis.

DOiVijVj0+ DijVjOVOi + DjOVijVOi
>0 Aj

D (\70i\7ij)(\7jk\7k0)
j>0K>0 Ajhy '

Ill. FRONT SIMULATIONS IN A SYSTEM
WITH CUBIC AUTOCATALYSIS

While the considerations in the preceding section apply to
both two and three spatial dimensions, we restrict ourselves
here to a two-dimensional system. We model situations with
Note thatd, », and 8 depend only on thy andz com-  eitherV,#0, Vy=0, orV,=0, Vy#0. _
ponents of the vectdv. The coefficient in front of the non- Ve study here a model autocatalytic chemical sysfem
linear termy can be found using the same argument as it 28— 3B. This model has often been used for studies of
Refs.[8, 11]. It is equal toy= — (C— Vgoy)/2. instabilities of reaction-diffusion frontgl1-13. With ad-

A few observations are now in order. First, if all the com- VECtion of species the system is described by the following

ponents of the matri¥’ are the saméhe case of bulk flogy ~ ca42ton:

all termsV,, and V,; vanish fori >0, and after the coordi- a , .

nate changex—x—Vgo,t EQ. (12) tumns into the classic ;= —ab"+Dada—VVa, (18)
Kuramoto-Sivashinsky equation. Nontrivial effects of the ex-
ternal field thus appear only if the field induces a differential
flow of the system species. Second, we have so far made no
assumptions about the strength of the field: ER) and
expression$13), (14), and(15) are valid for arbitrary fields.
Third, the parameters of Eq12), except fory, depend ex-

plicitly only on the lateral componerﬁ’” of the flow/field.
However, they depend on the normal component implicitly
through the eigenvectoss; of the problem(4).

The most important observation is that the effective dif-
fusion coefficientd, which determines the stability of the
trivial solution ¢,=0, depends quadratically on the strength
of the lateral component of the field. If the sign of the addi-
tional term in Eq.(13) is opposite to that oDy, a suffi-
ciently strong lateral fielavill always change the stabilitgf
the front.

We now seek the explicit dependencedobn the normal
componentV, of the flow field for smallV,. Taking the
operator—V,(d/9£) as a perturbation and using perturbation
theory one obtains

+

(19

b
£ =ab’+DgAb. (19)

The system is described in a coordinate frame in which
the specie8 does not undergo bulk motion.

Locally, the system has an integeal- b=a,, which is an
'external parameter. The system has two steady stages, (
=ay, b=0) and @=0, b=a,), the former unstable and the
latter stable. When spatially extended in one dimension
(DA,Dg#0 V=0), the system supports steadily prop-
agating waves of transition from the unstable state to the
stable ond12] (Fig. 1). In a two- or three-dimensional me-
dium, the propagating planar front remains stable as long as
Da/Dp<d84~2.35[11,12.

We simulated the systerfi8), (19) in a 2D rectangular
domain with laterali.e., in the direction of the planar front
size between 400 and 4800 units and normal length 100—200
units. The typical size of the medium was 120000 units.

In these simulations the planar front extended in the horizon-

<WiO|Vx|W8'> <W?|VX|W8'> tal (x) direction and propagated along the verticg) @irec-
Wo=w5— >, ﬁwfzwng —— W/,  tion. We imposed periodic boundary conditions on the verti
1=0 o M =0 ! (16 cal edges of the domain and no flux boundary conditions on

the horizontal edges.

where the zero superscripts designate the values correspond-

ing to V,=0. The expressiofl3) now becomes A. Effects of lateral flow

All the simulations of the system with a differential flow
of species along the front were made with equal diffusion
coefficients. The calculations demonstrate that, in accor-
a7 dance with Eq.(17), the otherwise stable flat propagating

(WO wg' VoiVioy
d=Dft+ >, ————(D{p+Dg) -2 ——
i>0 i i>0 i
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~ FIG. 1. Transition front between the initiad 1, b=0) and FIG. 3. Mean-square amplitude of the cellular pattern as a func-
final (a=0,b=1) states for the reactioh+2B—3B. Alltime and  tjon of the lateral differential flow velocity. ParameteB=Dg
space units in this and subsequent figures are dimensionless. —5 g

front becomes unstable when a lateral field is imposed, prog,qqulation becomes highly asymmetffeig. 2(b)].
vided that the field strength exceeds a critical value. OUr  aq shown in Fig. 4, the lateral differential flow signifi-

numerical simulations also reveal details of the pattern deganyy affects the velocity of the front propagation. During
velopment that are missing in the analysis performed in Segyq transient period, the growth of the front propagation ve-
Il. Figure 2 shows that the front becomes periodically ity accompanied the perturbation growth and was barely

modulated, and the modulation pattern drifts in the direction,yticeaple at the early stages. The lateral field affects the
opposite to the flow oA induced by the field. The amplitude |tera) drift of the front patterns as well: the drift also in-

of the pattern grows roughly linearly with the differential - ragses with the differential flow velocitfig. 4).
flow velocity, as illustrated in Fig. 3. The jagged appearance

of the curve results from the fact that the number of periods
in the pattern, and hence the front characteristics, change in a
discrete fashion as the parameters change continuously. While the effects of a lateral flow appeared in the model
For larger flows, 2v <10, the amplitude of the front Wwith equal diffusion coefficients, and hence far from the dif-
perturbation grew so large that the distortions caused th#usive front instability, the destabilizing effects of a normal
simulations to abort because the program could no longeifow were only observed in a vicinity of the diffusive insta-
locate and follow the front. At still larger flow velocities, the bility, with Do /Dg= 6.,~2.35.
tendency is reversed: the amplitude of the front distortions Figure 5 shows a cellular pattern that emerges on an oth-
diminishes as the velocity grows. The shape of the fronerwise stable planar frontD(,/Dg<d,,) due to the normal
differential flow of species. Just as in the case of lateral flow,
the pattern amplitude grows with the strength of the external

B. Effects of normal flow

flow of A flow of A

Front/drift velocity
&
T

1 -~ Front velocity
a b 0.5
FIG. 2. Cellular patterns caused by lateral differential flow of 0 e o ! |
reacting species. The size of the system is 22000 units. Gray 0 20 40 60 80 100
levels represent concentration Af dark areas correspond to high Flow velocity of A
a. The front propagates downwards. Time increases from the top
down. Parameter® ,=Dg=2.0. (a) Flow velocity V,=0.7; suc- FIG. 4. Front propagation velocity and drift velocity of the cel-

cessive frames are 100 time units apdh) Flow velocity V, lular pattern versus lateral differential flow velocity. Parameters:
=50; successive frames are 20 time units apart. D,=Dg=2.0.
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FIG. 5. Cellular pattern appearing on an initially flat front as the g[
result of normal differential flow. Parametei3,=5, Dg=2.2, v =
=0.225. The front propagates upward.
field (Fig. 6). Unlike the case of lateral flow, the pattern does
not drift along the front. An increase of the normal flow/f
in the positive directior(up in Fig. 5 slows the front until
the front undergoes a transition to another state. This new +=4800

state represents a nearly linear decreade arfid increase of
a along they direction. The critical flow velocity in our case FIG. 7. Flattening of a cellular front by a normal differential

WaS,VCVNO'Z.S' . . ) ) flow. The upper panel shows the front immediately before the
Figure 7 illustrates the opposite situation. Under S“ghtlyswitching on of the flow. Paramete®;,=5.0,Dg=1.7. The front
different conditions,D,/Dg=2.94> 5, the planar front propagates upward.

forms cellular patterns through a diffusive instability. Impos-

ing an external field in the direction opposite to that in thegtsive terms in the discretized scheme must be kept small

previous example makes the cellular pattern disappear angh ayse of the steep gradients in the solutions. The possibil-
the front become flat. The flow & in the negative direction ity of numerical instability caused by the convective term

accelerates the front propagatifig. 8).'It should be noted -3 pe avoided by using an “upwind” scheme in order to
that the dependence of the front velocity on the normal flowgiscretize the first order spatial derivative: forward differ-
velocity remained qualitatively the same, and the phenomgces for positive flow velocities and backward differences
enon of front extinction mentioned above persisted, evelior negative velocitieg14]. These observations, combined
when the diffusion coefficient ratio was far from critical \\ith the relatively modest demands for numerical accuracy,
(e.g., forDp=Dg=2). led us to choose the Euler technique as an adequate tool for
the problem. We varied both the time and the space resolu-
IV. NUMERICAL PROCEDURES tions to test the validity of the results. The size of the two-

Two considerations influenced our choice of a numericafilmenSIonal spatial grid was changed from 400 to 800 mesh

integration method. One is that the necessity of shifting thé:’Oints in thex dimension and from 100 to 200 in the

frame to adjust to the front position rules out multistep tech-dimension. The time step was varied from#0to 10 2.
nigues, such as the Gear or Adams and related predicto;[he frame gdjustment fo the front was m_ade o~y that the level
corrector methods, because a frame shift represents a kind fthea variable @<0.5) was kept at a fixed d|s_tan_ce from

a singular perturbation to the numerical procedure. The oth 1€ bou_ndaryal: 1 (normally half of the system size n the

is that neither the kinetic nor the diffusive terms in the equa—d'mens'o')' At the ;tart of each run, the propagating fr_ont
tions make the problem stiff: the kinetic terms in the equa V@S Precaiculated in a 1D system and then extended in the

tion for a andb are exactly equal in absolute value, and thesecond £ d|men5|pn with a ram_jom shift a_Iong thedi-
mension. The amplitude of the shift was 3 units, i.e., no more

( .

10
25
[} L
°
g |
g | = 2
5 k3]
o o
et [}
g > NS
g 5 5
; g
[}]
s ! l
05 7
0 L1 ! | L | ]
0 0.05 0.1 0.15 0.2 0.25 ; —
) ] . -20 -15 -10 -5 5
Normal differential flow velocity Normal flo

FIG. 6. Mean-square amplitude of the cellular pattern as a func- FIG. 8. Front propagation velocity versus normal differential
tion of normal differential flow velocity. Parameter®;,=5, Dg flow velocity. Parameter® ,=5, Dg=2.2. The front propagates in
=2.2. The front propagates in the positive direction. the positive direction.
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than 3% of the system size. To calculate the mean-squater species from accelerating the steady state reaction rate. In
amplitude of the front pattern, the front line was taken as thdact, this is the case in modéll8), (19): the rate of the

set of coordinates wher@=0.5. reaction increases with the concentration of spegieJhe
acceleration of the front with the flow & pointing towards
V. DISCUSSION the front can now be understood: it is caused by the in-

) ) o . creased steady state rate of the reac#lonB. While the

An interesting feature of the periodic patterns emergingsfect of a normal field on the front propagation velocity
on the front is that they always drift against the flow of e goes not seem counterintuitive, the similarly strong effect of
component. In terms of an “activator-inhibitor” description, 5 |ateral field appears somewhat surprising. The above expla-
the A species may be considered an inhibitor. It was argueghation of the front acceleration under normal flow can also
recently[15] that it is typical for waves induced by a differ- pe applied in this case to rationalize the phenomenon of the
ential flow instability in activator-inhibitor systems to move pattern drift. When perturbations of the front develop, some
against the flow of inhibitor. Apparently, the front cellular parts of the distorted front are facing the flow: the flow has a
patterns induced by a differential flow preserve this featurepgrmal component with respect to these parts, and the parts

The front propagation phenomena shown by mddé),  start drifting in the direction opposite to the flow. This con-
(19) are sometimes considered as analogs of flame frontggeration, however, does not elucidate the mechanism of the
[3,12]. We note one peculiarity of the cubic autocatalysis injnstanility itself, nor does it explain the acceleration of the
model(18), (19): its initial statea=a, andb=0, which cor-  front due to lateral flow. We believe that a more thorough
responds to the extinguished state, is unstable. Therefore ORfudy of Eq.(12) should provide some clue as well as de-
cannot observe extinction of a front in the simulations. Asgcripe the emerging front patterns. Since Etp) is quite
mentioned in Sec. Il B, we observed a transition from acomplicated, such a study will be a demanding task.
relatively narrow front to a nearly linear gradient when a oy results suggest the possibility of controlling propagat-
normal field was applied. We believe that in a more realistiGng fronts by external fields. In particular, the potential to
model, with the extinguished state stable against subthresgcelerate and/or stabilize front propagation may be impor-
old perturbation, such a transition would correspond to extant for combustion applications. We find it interesting that
tinguishing the front. the effects described here seem to be similar in many re-

Chemical waves in electric fields have been studied Préspects to those found by Shetral.[7] in a study of flames in
viously[6], but the explanations of the observed phenomengjectric fields. The possibility of stabilizing fronts may also

were restricted to a one-dimensional description of the wavepe sjgnificant for electrophysiology, and particularly for

fields on fronts in two- or three-dimensional systems may be Tq simulate an infinite medium with a finite grid we em-

much richer. ' _ ployed the standard approach of using periodic boundary
It is well known that the physical nature of the Turing conditions: we performed our simulations with periodic
instability is determined by the fact that the fast diffusion of youndary conditions in the lateral dimension. More realistic
the inhibitor removes it from the spot of increased activatolhoyndary conditions would certainly affect the results. In
growth[17]. The nature of the front instability due to normal particular, the convective nature of the front instability due

flow appears to be similar: the front becomes unstable wheg, |ateral fields will become important, and it merits further
the inhibitor, specied in our model, is taken away from the styqy.

reaction zone by the flow, and the front’s stability increases

in the opposite case. It should be noted that the term “inhibi-

_tor” ha;_a rather narrow meaning in_ th_e context of Tur_ing ACKNOWLEDGMENTS

instabilities: a small deviation of the inhibitor concentration

from its steady state value counteracts a small deviation of We gratefully acknowledge the support of the National
the activator concentration of the same sign from the activaScience Foundation Chemistry Division and the W. M. Keck
tor's steady state. In general, this does not prevent the inhibiFoundation.
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